Université PANTHEON-ASSAS (PARIS II) Droit - Economie - Sciences Sociales

U.E.F. 1 4007 Assas

Session: Mai 2021

Année d'étude : Première année de licence économie-gestion mention économie et gestion

Discipline : Analyse micro-économique (Unité d'Enseignements Fondamentaux 4007)

Titulaire du cours : Mme le Professeur Lucie Ménager

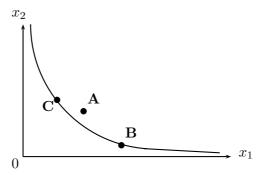
Documents: Calculatrice non autorisée, documents non autorisés.

Reportez vos réponses sur la grille fournie. Il y a **une seule bonne réponse** par question. Une non-réponse vaut 0. Une mauvaise réponse vaut des points négatifs, donc ne répondez pas au hasard. Faites vos calculs au brouillon comme pour un examen standard. Bon travail.

Questions de cours

- Dans le plan (x_1, x_2) , la pente de la droite de budget est
- (A) négative et augmente avec le prix du bien 1.
- (B) positive et augmente avec le prix du bien 1.
- (C) négative et diminue avec le prix du bien 1.
- (D) positive et diminue avec le prix du bien 1.

Si une relation de préférences \succeq vérifie l'axiome de non-saturation, quelle proposition est fausse?


(A)
$$(4,1,1) \succeq (3,1,0)$$
; (B) $(1,3,0) \succeq (16,1,10)$; (C) $(5,2,4) \succeq (5,3,4)$;

(D)
$$(2,1,3) \succeq (2,1,3)$$

Supposons que $(2,1,4) \succeq (3,2,2)$ et que $(2,2,2) \succeq (2,1,4)$. Si \succeq vérifie l'axiome de transitivité, quel axiome ne satisfait-elle pas ?

(A) La complétude. (B) La convexité. (C) La non-saturation.

Sur la figure suivante, on a représenté les paniers et la courbe d'indifférence d'un consommateur passant par les paniers B et C.

Quelle affirmation est vraie?

- (A) Le $TMS_{2/1}$ est plus élevé au panier B qu'au panier C.
- (B) Le consommateur préfère le panier C au panier A.
- (C) Le $TMS_{2/1}$ est plus élevé au panier C qu'au panier B.
- (D) Le consommateur préfère le panier C au panier B.

Considérons un consommateur dont la demande en bien X dépend de son revenu R selon la relation suivante : $x(R) = AR^{\alpha}$, avec $\alpha > 0$. Il est possible d'affirmer que pour ce consommateur

- (A) X est un bien inférieur.
- **(B)** X est un bien de luxe si $\alpha < 1$.
- (C) X est un bien Giffen si $\alpha > 1$.
- (D) X est un bien de première nécessité si $\alpha < 1$.

Exercice 1

L'utilité d'un consommateur est égale au nombre de tasses de café "parfaitement" sucré qu'il peut boire, c'est-à-dire de tasses de café contenant exactement a sucres, avec $a \in \mathbb{R}_+$. On note x_1 le nombre de cafés et x_2 le nombre de sucres.

La fonction d'utilité du consommateur est

(A)
$$u(x_1, x_2) = \min\{ax_1, x_2\}$$
; (B) $u(x_1, x_2) = \min\{x_1, ax_2\}$; (C) $u(x_1, x_2) = \min\{\frac{1}{a}x_1, x_2\}$; (D) $u(x_1, x_2) = \min\{x_1, \frac{1}{a}x_2\}$.

Le consommateur a 3 euros en poche, et un café coûte 2 euros et un sucre coûte 0.25 euros.

7 Quelle est la contrainte budgétaire du consommateur?

(A)
$$2x_1+x_2=3$$
; (B) $x_1+0.25x_2=3$; (C) $2x_1+0.25x_2=3$; (D) $2x_1+2x_2=3$.

Supposons maintenant que a=4. Combien le consommateur achète-t-il de tasses de café sucré?

Exercice 2

Les parents font les courses dans un magasin de vêtements. Ils disposent de 90 euros pour acheter une quantité x de vêtements pour adultes (bien X), et une quantité y de vêtements pour enfants (bien Y). Le prix des vêtements pour adultes est p euros et celui des vêtements pour enfants est 2 euros. Les préférences des parents sur les paniers de vêtements sont représentées par la fonction

$$u(x,y) = x^{1/4}y^{1/2}$$

9 Le taux marginal de substitution $TMS_{y/x}(x,y)$ est

(A)
$$\frac{y}{2x}$$
; (B) $\frac{2y}{x}$; (C) $\frac{x}{2y}$; (D) $\frac{2x}{y}$.

La demande des parents en vêtements d'adultes est

(A)
$$x = \frac{90p}{8+p^2}$$
; (B) $x = \frac{60}{p}$; (C) $x = \frac{90p}{2+p^2}$; (D) $x = \frac{30}{p}$.

11 La demande des parents en vêtements d'enfants est

(A)
$$y = \frac{360}{8+p^2}$$
; (B) $y = 15$; (C) $y = \frac{90}{2+p^2}$: (D) $y = 30$.

12 L'élasticité prix de la demande en vêtements pour adultes est

(A)
$$\frac{30}{p}$$
; (B) -1 ; (C) $-\frac{1}{p}$; (D) $-\frac{60}{p^2}$.

Le magasin solde les vêtements d'adultes avec un rabais de 20%. Quelle est la conséquence sur la demande en vêtements d'adultes?

(A) Elle augmente de 20%. (B) Elle diminue de 20%. (C) Elle augmente de 1 euro. (D) Elle diminue de 1 euro.

Exercice 3

Soit une économie à 2 biens. Les préférences de Marie, Jean-Baptiste et Théo peuvent être représentées par les fonctions d'utilité :

Marie : $u_M(x_1, x_2) = x_1 x_2$

Jean-Baptiste : $u_J(x_1, x_2) = x_1 + x_2$

Théo : $u_T(x_1, x_2) = \min\{x_1, 2x_2\}$

La dotation initiale totale de l'économie est e=(9,9). On considère les allocations :

 $A_1 = \{(3,3), (3,3), (3,3)\}$

 $\mathcal{A}_2 = \{(0,9), (6,0), (3,0)\}$

 $\mathcal{A}_3 = \{(1,4), (3,2), (5,3)\}$

L'utilité de Marie en l'allocation qui maximise le critère égalitariste est

L'utilité de Marie en l'allocation qui maximise le critère utilitariste est

Exercice 4

Alice et Bruno ont pour fonction d'utilité:

 $A : u_A(x_A, y_A) = x_A y_A$

 $B : u_B(x_B, y_B) = x_B^{1/2} y_B^{1/2}$

La dotation initiale d'Alice est $e_A = (2,0)$ et celle de Bruno est $e_B = (0,4)$.

Les taux marginaux de substitution du bien y vers le bien x des deux agents sont

(A)
$$TMS^{A}(x_{A}, y_{A}) = \frac{y_{A}}{x_{A}}$$
 et $TMS^{B}(x_{B}, y_{B}) = \left(\frac{y_{B}}{x_{B}}\right)^{1/2}$

(B)
$$TMS^A(x_A, y_A) = \frac{x_A}{y_A}$$
 et $TMS^B(x_B, y_B) = \frac{x_B}{y_B}$

(C)
$$TMS^{A}(x_{A}, y_{A}) = \frac{y_{A}}{x_{A}} \text{ et } TMS^{B}(x_{B}, y_{B}) = \frac{y_{B}}{x_{B}}$$

(D)
$$TMS^{A}(x_{A}, y_{A}) = \frac{x_{A}}{y_{A}} \text{ et } TMS^{B}(x_{B}, y_{B}) = \left(\frac{x_{B}}{y_{B}}\right)^{1/2}$$

L'ensemble des optima de Pareto est

(A)
$$\{\{(x_A, 2x_A)(2 - x_A, 4 - 2x_A)\}, x_A \in [0, 2]\}$$

(B)
$$\{\{(x_A, \frac{x_A}{2} + 3)(2 - x_A, 1 - \frac{x_A}{2})\}, x_A \in [0, 2]\}$$

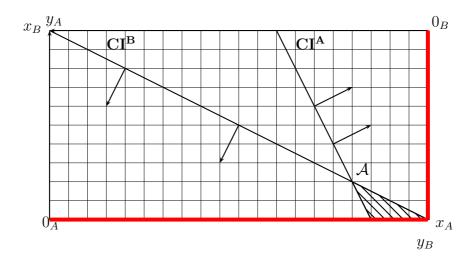
(C)
$$\{\{(x_A, x_A^2)(2 - x_A, 4 - x_A^2)\}, x_A \in [0, 2]\}$$

On note p le prix du bien X et on normalise le prix du bien Y à 1. La demande optimale d'Alice est

(A)
$$\left(\frac{1}{p}, 2p-1\right)$$
; (B) $(2,0)$; (C) $(1,p)$; (D) $(p, 2p-p^2)$.

19 La demande optimale de Bruno est

(A)
$$\left(\frac{2}{p}, 2\right)$$
; (B) $(2, 4 - 2p)$; (C) $\left(\frac{1}{p}, 3\right)$; (D) $(1, 4 - p)$.


20 Le prix d'équilibre du bien X est

(A)
$$p^* = 1$$
; (B) $p^* = 2$; (C) $p^* = 3$; (D) $p^* = 4$.

21 L'allocation d'équilibre $\{(x_A^*, y_A^*), (x_B^*, y_B^*)\}$ est

(A)
$$\{(1,1),(2,2)\}$$
; (B) $\{(1,2),(1,2)\}$; (C) $\{(2,1),(2,1)\}$; (D) $\{(2,2),(2,2)\}$.

Considérons la situation représentée dans la figure suivante : il y a deux agents dans l'économie, munis de l'allocation initiale \mathcal{A} . Les courbes d'indifférence des agents passant par la dotation initiale sont respectivement CI^A et CI^B . On admet que l'ensemble des optima de Pareto se situe en bas et à droite de la boîte (les lignes épaisses).

22 Que représente la zone définie par le triangle grisé?

(A) l'ensemble des allocations Pareto-dominées par l'allocation initiale \mathcal{A} ; (B) l'ensemble des allocations qui Pareto-dominent l'allocation initiale \mathcal{A} ; (C) l'ensemble des optima de Pareto.

En invoquant le Premier théorème du bien-être, on peut affirmer sans calcul que, à l'équilibre de Walras,

(A) l'agent A ne consomme pas de bien Y; (B) l'agent B ne consomme pas de bien X; (C) l'agent A ne consomme pas de bien X; (D) l'agent A ne consomme pas de bien Y et l'agent B ne consomme pas de bien X.